
Tutorial:
Multi-Agent Learning

D Balduzzi, T Graepel, E Hughes, M Jaderberg, S Omidshafiei, J Perolat, K Tuyls



Joint work with many great collaborators, including:

Marc Lanctot David Silver Vinicius ZambaldiGeorg OstrovskiAudrunas Gruslys

Christos Papadimitriou Georgios Piliouras

Jean-Baptiste Lespiau

 Remi MunosWojciech CzarneckiMark RowlandDaniel Hennes

Dustin Morrill

Joel Z. Leibo Sébastien Racanière

James Martens

Jakob Foerster

Edgar Duéñez-Guzmán Luke Marris Nicolas Heess Zhe Wang Edward Lockhart Siqi Liu Michael Bowling Finbarr Timbers

Guy Lever



  

We won’t cover ...

● Single Agent Reinforcement Learning

○ Markov Decision Processes

○ Algorithms

● A good resource though



Part I. Background & Theory 

1. Introduction
2. NFGs and Markov Games
3. Social Learning



● Motivation

● What is Multi-Agent Learning?

○ General Setup

○ Different Realizations: RL-based, Swarms, Evo-based

○ Role of (Evolutionary) Game Theory

● Game Theoretic Intuitions: NFG and Replicator Dynamics

● Opportunities & Challenges

Part I: Background & Theory



● Re-thinking fundamentals of whole area
○ Special issue Shoham 2007
○ AI Magazine article (Weiss & Tuyls)
○ The rise of Deep Learning and building AGI

● A unified formal framework
● Better understanding/theoretical underpinnings
● Application to complex systems

Based on a recent paper:
K. Tuyls and P. Stone: Multiagent Learning Paradigms. To Appear

Motivation
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Example (RoboCup)



Example warehouse commissioning
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What is Multi-Agent Learning? 



The study of multi-agent systems in which one or more of the 
autonomous entities improves automatically through experience

K. Tuyls and P. Stone: Multiagent Learning Paradigms. 

 

What is Multi-Agent Learning?



● RL towards individual utility 

● RL towards social welfare 
● Co-evolutionary learning 
● Swarm Intelligence 
● Adaptive mechanism design

● Tools
○ EGT
○ (Opponent Modelling)

What is Multi-Agent Learning?



What is Multi-Agent Learning?



General Setup



Several Realizations

1. Online RL towards individual utility
2. Online RL towards social welfare
3. Co-Evolutionary approaches
4. Swarm Intelligence
5. Adaptive Mechanism Design



What is Multi-Agent Learning?



EGT: unified theory (Role of EGT)
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EGT: Towards a Unified Theory (Role of EGT)



Game Theoretic Intuitions
• Evolutionary Game Theory (EGT), 1

▪ Application of game theory to evolving populations
of lifeforms in biology (1973, Smith & Price)

▪ EGT differs from classical GT by focusing more 
on the dynamics of strategy change (quality, frequency)

▪ Common approach: replicator equations, describing growth rate of 
the proportion of organisms using a certain strategy



• Evolutionary Game Theory (EGT), 2
▪ Extension to two-player game situations, coupled

replicator equations: 

▪ Example: Prisoner’s dilemma

Game Theoretic Intuitions



• There are strong formal links between EGT and multi-agent 
RL [e.g., AAMAS09/10/12/14, IAT08, ECML, AAAI’14, 
JAIR’15 etc.]

▪ Learning dynamics corresponds to replicator dynamics
▪ The concept of evolutionary stable strategies (ESS) can 

be transferred to multi-agent RL (⇨ Nash equilibria)
▪ Multi-agent RL methods and evolutionary models
▪ Recently connection between PG and RD (Neural Replicator 

Dynamics)

Game Theoretic Intuitions



• We showed that there are strong formal links between EGT 
and multi-agent RL [e.g., AAMAS09/10/12/14, IAT08, 
ECML, AAAI’14, JAIR’15 etc.]

▪ Learning dynamics corresponds to replicator dynamics
▪ The concept of evolutionary stable strategies (ESS) can 

be transferred to multi-agent RL (⇨ Nash equilibria)
▪ Multi-agent RL methods and evolutionary models:

Game Theoretic Intuitions



FAQ and Prisoner‘s Dilemma

Game Theoretic Intuitions
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Game Theoretic Intuitions



Switching dynamics

Game Theoretic Intuitions



Game Theoretic Intuitions



• Swarm Intelligence: Haitham Bou-Ammar, Karl Tuyls, 
Michael Kaisers: Evolutionary Dynamics of Ant Colony 
Optimization. MATES 2012: 40-52

• Co-evolution: Liviu Panait, Karl Tuyls, Sean Luke: 
Theoretical Advantages of Lenient Learners: An 
Evolutionary Game Theoretic Perspective. Journal of 
Machine Learning Research 9: 423-457 (2008)

Other paradigms



(Some) References

● M. L. Littman. Markov Games as a Framework for Multi-Agent Reinforcement Learning. ICML 1994: 
157-163

● C. Claus, C. Boutilier. The Dynamics of Reinforcement Learning in Cooperative Multiagent Systems. 
AAAI/IAAI 1998: 746-752

● G. Weiss. MultiAgent Systems (2nd edition), 2013. ISBN 978-0-262-01889-0
● Yoav Shoham, Rob Powers, Trond Grenager. If multi-agent learning is the answer, what is the question? 

Artif. Intell. 171(7): 365-377 (2007)
● D, Bloembergen, K. Tuyls, D. Hennes, and M. Kaisers. Evolutionary Dynamics of Multi-Agent Learning: 

A Survey. Journal of Artificial Intelligence Research (JAIR), Volume 53, pages 659-697, 2015
● K. Tuyls and P. Stone. Multiagent learning paradigms. To appear.
● P. Stone. Multiagent learning is not the answer. It is the question. Artif. Intell. 171(7): 402-405 (2007)
● P. Stone, M. Veloso. Multiagent Systems: A Survey from a Machine Learning Perspective. Auton. Robots 

8(3): 345-383 (2000)



2. From Normal Form
to Markov Games



● Game theory’s role in multi-agent learning:

○ Model of agent interactions

○ Analytic toolkit for evaluating agents

○ Consistent driver of innovations in learning algorithms 

● Objective: 

Provide foundational & intuitive understanding of key game theory concepts

Game Theory 101



From Normal Form to Markov Games

Normal Form 
Games

Markov Games

Definitions:

● Model
● Solution concepts

Algorithms Based on 
Best Response 

Definitions:
● Model
● Optimal policy

Learning in Markov Games
(Part II)
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Normal Form Games: Formal Description
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Let’s start with a two-player Normal Form Game (NFG):



Normal Form Games: Solution Concept

● Next step: analyze agent behaviors given this model of interactions 

● A solution concept is a formal set of principles that can be:

○ Descriptive: forecasts how agents will behave 

○ Prescriptive: suggests how agents should behave



Normal Form Games: Solution Concept
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Best response (BR): the strategy with 

highest payoff for a player, given knowledge 

of the other players’ strategies

π2,BR = BR(π1 =(1,0)) = (1,0) 

π2,BR = BR(π1 =(0,1)) = (0,1)



Normal Form Games: Solution Concept
● Nash Equilibrium: 

A strategy profile where all players in simultaneous best responses to each other

maxπ  πT R1 π2 = π1T R1 π2      and      maxπ  π1T R2 π = π1T R2 π2

i.e., no player can do better by unilaterally deviating

● Nash’s theorem [1950]: 

Every finite game has a mixed strategy Nash equilibrium

● Not unique in general → equilibrium selection problem



Nash equilibria and their expected payoffs:

1. π1,π2 = (1,0), (1,0) →  (2,1)
2. π1,π2 = (0,1), (0,1) → (1,2)
3. π1,π2 = (⅔,⅓), (⅓,⅔) → (⅔,⅔)

● Very different outcomes!
● Intractable in general [Daskalakis et al., 2009]

○ Though polynomial-time computable for 
two-player zero-sum games

Normal Form Games: Solution Concept
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Nash equilibria and their expected payoffs:

1. π1,π2 = (0,1), (1,0) →  (1,0)
2. π1,π2 = (1,0), (0,1) → (0,1)
3. π1,π2 = (100/101,

1/101), (
100/101,

1/101) → (0,0)

3rd equilibrium may seem reasonable, but >0 
probability of (-100,-100) reward for both players!

Normal Form Games: Solution Concept
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Normal Form Games: Solution Concept

A better alternative might be to play the distribution on the right:

50%

Stop Go

St
op

G
o

Player 2

Pl
ay

er
 1

50% 0%

0%

Unfortunately, no set of independent mixed strategies 
can result in this joint distribution!

0

0

0

1

1

0

-100

-100

Stop Go

St
op

G
o

Player 2

Pl
ay

er
 1



Normal Form Games: Solution Concept
● Idea: address the issue of independent randomness by using a joint distribution

○ Correlated equilibria

A correlated equilibrium is a distribution, D, over 
strategy profiles such that for every player i:

Ea~D  [r
i(ai, a-i) | ai ] ⩾ maxa Ea~D  [r

i(a, a-i) | ai ]

Sampled action for player i

Joint action samples
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Normal Form Games: Solution Concept
● Idea: address the issue of independent randomness by using a joint distribution

○ Correlated equilibria
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Topology of Solution Concepts

Mixed Nash equilibrium

Correlated Equilibrium

Coarse Correlated Equilibrium

Pure Nash equilibrium



From Normal Form to Markov Games

Normal Form 
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Markov Games

Definitions:

● Model
● Solution concepts

Algorithms Based on 
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Definitions:
● Model
● Optimal policy

Learning in Markov Games
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Normal Form Games: Algorithms

So far: solution concepts (e.g., Nash Equilibria) given full knowledge of game

Learning dynamics: do the dynamical interactions of players with limited 

knowledge lead to these solution concepts?



Normal Form Games: Algorithms

Let’s weaken our assumptions:

● Players interact in rounds

● Each player knows their own strategy, but not the full payoff table

● After each round, each player observes their pure strategies’ expected payoffs:

Player 1 observes vector R1 π2

Player 2 observes vector π1T R2



● Fictitious Play [Brown, 1951]:

○ Play a best response w.r.t. history of play in the T previous rounds

Normal Form Games: Fictitious Play

π1 ∊ argmaxπ πT(1/T ∑t R
1πt

2)

Observed payoff vector in round t

○ “Fictitious” in the sense that each player maintains a belief over opponent 

strategies according the play history

Time-average opponent play

π1 ∊ argmaxπ πTR1 (∑t
1/T πt

2)



Normal Form Games: Fictitious Play
● Fictitious Play [Brown, 1951]:
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● Fictitious Play [Brown, 1951]:
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Normal Form Games: Fictitious Play
● Fictitious Play [Brown, 1951]:
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Play will continue to cycle deterministically, with 

time-average strategies converging to Nash



Normal Form Games: Fictitious Play
● When does Fictitious Play converge, and to what? 

● Average-time strategies of fictitious players converge to a Nash in:

○ Two-player zero-sum games

○ 2x2 games

○ Potential games

○ …

● Not guaranteed in general! Try it on modified RPS:

Rock      Paper      Scissors

  0,0        0,1            1,0

  1,0         0,0          0,1

  0,1         1,0          0,0
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 1



Normal Form Games: Oracle Algorithms
● Goal: compute a Nash equilibrium of the game (AKA “solve” the game)

● Insight: computing a best response is generally cheaper than solving the game

○ Reduction to a single-player optimization problem

○ Due to their efficiency, BR algorithms sometimes called “oracles”

● Oracle algorithms use BR to solve the game: 

○ Single/double oracle: one/both player(s) use the oracle algorithm



Normal Form Games: Oracle Algorithms
● Double oracle [McMahan et al., 2003]:
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Normal Form Games: Oracle Algorithms
● Double oracle [McMahan et al., 2003]:
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Normal Form Games: Oracle Algorithms
● Double oracle [McMahan et al., 2003]:

R            

R 0      

    

     

● Iteration 0: restricted game of R vs. R

● Iteration 1:

○ Solve restricted game: 

(1, 0, 0), (1, 0, 0)

○ Unrestricted BR1
1,BR2

1 = P, P



Normal Form Games: Oracle Algorithms
● Double oracle [McMahan et al., 2003]:
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● Iteration 0: restricted game of R vs. R

● Iteration 1:

○ Solve restricted game: 

(1, 0, 0), (1, 0, 0)

○ Unrestricted BR1
1,BR2

1 = P, P

● Iteration 2:

○ Solve restricted game:

(0, 1, 0), (0, 1, 0)

○ Unrestricted BR1
2,BR2

2 = S, S



Normal Form Games: Oracle Algorithms
● Double oracle [McMahan et al., 2003]:

R     P      S   

R 0      -1     1

P 1       0     -1

S       -1     1     0

● Iteration 0: restricted game of R vs. R

● Iteration 1:

○ Solve restricted game: 

(1, 0, 0), (1, 0, 0)

○ Unrestricted BR1
1,BR2

1 = P, P

● Iteration 2:

○ Solve restricted game:

(0, 1, 0), (0, 1, 0)

○ Unrestricted BR1
2,BR2

2 = S, S

● Iteration 2:

○ Solve restricted game:

(⅓, ⅓, ⅓), (⅓, ⅓, ⅓)



Normal Form Games: Oracle Algorithms
● Computation time improvements vs. solving full game [McMahan et al., 2003]:



Normal Form Games: Algorithms
● When does Double Oracle converge, and to what? 

● Convergence guaranteed for two-player finite games

○ Proof: worst case, the restricted game just expands to the full game

● Convergence to minimax equilibrium in finite games [McMahan et al. 2003]



From Normal Form to Markov Games

Normal Form 
Games

Markov Games
Definitions:
● Model
● Optimal policy

Learning in Markov Games
(Part II)

Definitions:

● Model
● Solution concepts

Algorithms Based on 
Best Response 



Markov Games: Description

Setting (e.g., in a 2-player game):
● Agents in environment with state s 

State s



Markov Games: Description

Setting (e.g., in a 2-player game):
● Agents in environment with state s 
● Simultaneously select actions a1 & a2 

● Receive rewards r1(s,a1,a2) & r2(s,a1,a2)

State s
a1,a2

r1(s,a1,a2), r2(s,a1,a2)



Markov Games: Description

Setting (e.g., in a 2-player game):
● Agents in environment with state s 
● Simultaneously select actions a1 & a2 

● Receive rewards r1(s,a1,a2) & r2(s,a1,a2)
● Move to state s’ ~ p(.|s,a1,a2)

State s
a1,a2

r1(s,a1,a2), r2(s,a1,a2)

s’ ~ p(.|s,a1,a2)

State s’



Markov Games: Description

Setting (e.g., in a 2-player game):
● Agents in environment with state s 
● Simultaneously select actions a1 & a2 

● Receive rewards r1(s,a1,a2) & r2(s,a1,a2)
● Move to state s’ ~ p(.|s,a1,a2)

Goal: find the “optimal” policy

If actions are selected according to policies π1(.|s) & π2(.|s), i.e., a1~π1(.|s) and a2~π2 (.|s):

Player 1 receives v1
π1 ,π2 (s0) = Eπ1 ,π2  [r

1(s0,a1
0,a2

0) + ɣ r1(s1,a
1
1,a

2
1) + ...]

Player 2 receives v2
π1 ,π2 (s0)  = Eπ1 ,π2  [r

2(s0,a1
0,a2

0) + ɣ r2(s1,a
1
1,a

2
1) + ...]

State s
a1,a2

r1(s,a1,a2), r2(s,a1,a2)

s’ ~ p(.|s,a1,a2)

State s’

Discount factor ∊ [0,1)



From Normal Form to Markov Games

Normal Form 
Games

Markov Games

Definitions:

● Model
● Solution concepts

Algorithms Based on 
Best Response 

Definitions:
● Model
● Optimal policy

Learning in Markov Games
(Part II)



References

● L. S. Shapley. Stochastic Games. In Proc. of the National Academy of Sciences of the United States of 
America, 1953

● A. J. Hoffman, R. M. Karp. On nonterminating stochastic games. Management Science, 12(5):359–370, 
1966.

● M. Pollatschek, B. Avi-Itzhak. Algorithms for Stochastic Games with Geometrical Interpretation. Management 
Science, 1969

● J. A. Filar, B. Tolwinski. On the Algorithm of Pollatschek and Avi-ltzhak. Springer, 1991.
● M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Pérolat, D. Silver, T. Graepel. A unified 

game-theoretic approach to multiagent reinforcement learning. NIPS 2017.
● J. Heinrich, D. Silver. Deep Reinforcement Learning from Self-Play in Imperfect-Information Games. arXiv 

2016.
● J. Perolat. Reinforcement Learning: The Multi-Player Case. PhD thesis.



3. Social Learning



Social dilemmas

Situations where any individual may profit from selfishness unless too many  individuals choose the 

selfish option, in which case the whole group loses.

“Social dilemmas expose tensions between collective and individual rationality”

-Anatol Rapoport (1974)



Social dilemmas (Liebrand 1983, Macy & Flache 2002)

● Reward for mutual cooperation

● Sucker for cooperating with defector

● Punishment for mutual defection

● Temptation to defect on a cooperator

1. R > P (mutual cooperation better 

than mutual defection)

2. R > S (mutual cooperation better 

than being exploited)

3. T > P (being greedy better than 

being punished)

4. either (fear) S < P (being 

sucker worse than mutual defection)

… or (greed) T > R (being 

greedy better than mutual cooperation)



● MGSDs are defined as repeated 

matrix games for which the social 

dilemma inequalities hold.

● The social dilemma inequalities 

enforce the mixed motivation 

structure of the game: both 

competition and cooperation are 

motivated.

● SSDs are defined by an EGTA 

mapping to an associated MGSD.

Sequential Social Dilemmas

● MGSD = Matrix Game Social Dilemma

● SSD = Sequential Social Dilemma

● EGTA = Empirical Game Theory Analysis



● Can we design an agent that 

can promote cooperation and 

take fairness into account in 

SSDs?

● Can we do this based on the 

Fehr and Schmidt model of 

inequity aversion?

Sequential Social Dilemmas

● MGSD = Matrix Game Social Dilemma

● SSD = Sequential Social Dilemma

● EGTA = Empirical Game Theory Analysis



Examples (Leibo et al. 2017) 

Gathering

● Cooperation = not tagging

● Defection = tagging

Wolfpack

● Cooperation = team capture

● Defection = individual capture



Proving that these are SSDs (by Schelling diagrams) 



Examples

● Each line shows the payoff to an individual agent (y) for choosing C or D as a 

function of number of others that chose C (x).



The Fehr and Schmidt model (Fehr and Schmidt, 1999)

envy

guilt



The inequity-averse agent model (Hughes, Leibo, Tuyls et al. 2018)

envy

guilt



Envy and guilt

envious
guilty



The Tragedy of the Commons (Hardin 1968)

Tension between collective and individual rationality.



The Commons Game (Leibo, Perolat et al. 2017)

1. Agents move around on a grid world.

2. Agents are only rewarded when they collect an apple.

3. The apple growth rule is density dependent. So apples grow more quickly 
adjacent to nearby apples.

4. If all the apples in a local patch are removed then none grow back.

5. Episodes last 1000 steps, after which the game resets to its initial 
condition.

6. Agents have a “time-out beam” with which they can zap one another. 
A zapped agent gets removed from the game for 25 steps.



The Commons Game

● N = 10 players

● Each agent can individually profit from selfishness, but the group is doomed if all elect that option.

● There can be a “tragedy of the commons”   (G. Hardin 1968)



Societal-level measurement is complicated!

1. Utilitarian efficiency (U) = total reward (sum over all players)

2. Sustainability (S) = average time of reward collection in episode

3. Peacefulness (P) = average number of unzapped agent steps

Only illustrate a couple of experiments 

Multiple social outcome metrics



Envious agents become police

http://www.youtube.com/watch?v=tz3ZpTTmxTk


Envious agents become police



The Public Goods Game (Hughes, Leibo, Tuyls et al. 2018)



The Public Goods Game

1. Agents move around on a grid world.

2. Agents are only rewarded when they collect an apple.

3. The apple growth rule is dependent on the waste density. The lower 
the waste, the higher the apple growth.

4. Initially the waste density is so high that no apples can spawn.

5. Episodes last 1000 steps, after which the game resets to its initial 
condition.

6. Agents have a “fining beam” with which they can zap one another. 
Fining costs -1 reward, and causes the fined agent -50 reward.



Guilty agents provide public goods

http://www.youtube.com/watch?v=N8BUzzFx7uQ


Guilty agents provide public goods



● Understanding several MAL paradigms within 1 framework

● EGT as a tool to capture MAL dynamics

● Deep Reinforcement Learning opens new possibilities in 
many respects, revisiting some of the old results

● Evaluation, Dynamics, and new Algorithmics

Take home



Part II. Evaluation & Learning

4. Evaluation
5. Gradients in Games
6. Multi-agent Learning at Scale
7. The Importance of Games



4. Evaluation



How to evaluate agents in 
a multi-agent context?



Overview
Elo Rating

● Static score
● Cannot capture dynamics
● Cannot deal with intransitivities

Discrete-time Evolutionary Dynamics

● Many-agent interactions
● Stable agents & Markov-Conley Chains
● Unique, tractable to compute & select

Continuous-time Evolutionary Dynamics

● Limited to evaluating 3/4 agents
● Stable/unstable Nash equilibria
● Generally intractable to compute & select

Little hope for a general predictive theory in terms of Nash equilibrium

Empirical Game Theory

For a detailed description of an evaluation method based on Nash (Nash Averaging), see:
David Balduzzi, Karl Tuyls, Julien Pérolat, Thore Graepel: Re-evaluating evaluation. NeurIPS 2018: 3272-3283



Elo Evaluation

“The logic of the equation is evident without algebraic demonstration: a player performing above his 
expectancy gains points, and a player performing below his expectancy loses points.” – Arpad E. Elo

● Update rule:

● Win probability:

● Chess:

 Elo picked 10 as basis and 400 as the denominator because then a difference of 400 points corresponds 
to a 90% winning probability. 



Elo Evaluation

8: 1330 In reality: 8>21, 21>10 and 10>8 
10: 1927
21: 2069



Empirical Game Theory Analysis

● A symmetric multi-agent Meta-Game:

(S, A, M, p-type)

● Policies are atomic actions, |A|=n

● n does not need to equal p

● S and A can coincide

● E.g. Go dataset: (S, A, M, 2-type)

○ |A|=30 and S=A

Payoff table from data



Meta-Game analysis
● Example Rock-Paper-Scissors

● Strategy Space Consumption:
○ Use sizes of basins of attraction to rate strategies

○ Combine with curl and sizes of differential

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0.0)



Experiments
AlphaGo, Colonel Blotto, Leduc Poker



Set of 30 strategies.

AlphaGo data set



Set of 30 strategies.

AlphaGo data set

This meta-analysis does not only show the attractor(s) and its (their) stability, but also how the 
multi-agent interaction flows through strategy space, and what the basins of attraction look like.



Go Leaderboard

AlphaGo data set

The curl, size and direction of the differential play a role in the determination of the strength and 
weakness of a strategy in strategy space, and will be useful for the strategy space consumption concept.



Go Leaderboard

AlphaGo data set



See https://github.com/deepmind/open_spiel for description / implementation

● 2 players, 100 troops each

● Divide over 5 lands

[[20, 20, 20, 20, 20]]

[[33, 1, 32, 1, 33]]

Colonel Blotto Game

https://github.com/deepmind/open_spiel


Examined 10 most played strategies

Colonel Blotto

human play

Also in the case of mixed Nash equilibria, the concepts are still eligible, and we can determine the strength 
of a strategy by computing how much it pulls the mixed equilibrium towards itself.



PSRO -- asymmetric games - symmetrised replicator dynamics - Leduc

Player 1 Player 2

Leduc Poker (PSRO)

In asymmetric games we get a coupled system of replicator equations, resulting in a simplex for each 
player over its respective strategy sets. The dynamics are now more complex (and coupled), but still 
these plots provide insightful information w.r.t. equilibria and the flow of dynamics. 

An interesting, previously unknown result, is that a mixed Nash Equilibrium (x,y) in the asymmetric 
game is also a mixed Nash Equilibrium in the symmetrised games, i.e., the y-component for the row 
player’s game, and the x-component in the column player’s game. The reverse is also true.



● EGT/meta-games well suited for both 

symmetric and asymmetric games

○ Poker, Go, Auctions, Robotics

● Provide bounds that tell you how reliable 

the estimated game is

● Limited to 3/4 strategies

In Conclusion



Multi-Agent Evaluation
Elo Rating

● Static score
● Cannot capture dynamics
● Cannot deal with intransitivities

Discrete-time Evolutionary Dynamics

● Many-agent interactions
● Stable agents & Markov-Conley Chains
● Unique, tractable to compute & select

Continuous-time Evolutionary Dynamics

● Limited to evaluating 3/4 agents
● Stable/unstable Nash equilibria
● Generally intractable to compute & select

Little hope for a general predictive theory in terms of Nash equilibrium

Empirical Game Theory



Dynamical Systems Foundations
● Analogous to Nash using Kakutani’s fixed point theorem as a basis for his solution concept, 

we use Conley’s Fundamental Theorem of Dynamical Systems (Conley, 1978):
“Any flow on a compact metric space decomposes into a 
gradient-like part that leads to a recurrent part.”

● Markov-Conley Chains (MCCs) are the discrete analogs of the recurrent set above
○ Capture irreducible long-term dynamical interactions between agents
○ Correspond to the unique stationary distribution of an underlying discrete-time evolutionary process
○ Pinpoint diverse set of agents that are evolutionarily stable (cannot be mutated or invaded)

Matching pennies gameCoordination game



● Caveat: difficult to study these recurrent sets theoretically
○ We need a meaningful approximation that can be tractably analyzed

● Response graph: directed graph where nodes correspond to pure strategy profiles, and 
directed edges if the deviating player’s new strategy is a better-response

L C R

U (2,0) (0,2) (0,0)

M (0,2) (2,0) (0,0)

D (0,0) (0,0) (1,1)

(U,L) (U,C) (U,R)

(M,L) (M,C) (M,R)

(D,L) (D,C) (D,R)

Player 1

Player 2

A Dynamical Solution Concept



● Caveat: difficult to study these recurrent sets theoretically
○ We need a meaningful approximation that can be tractably analyzed

● Response graph: directed graph where nodes correspond to pure strategy profiles, and 
directed edges if the deviating player’s new strategy is a better-response

● Markov-Conley chains (MCCs): 
○ Markov chains over the sink strongly connected components of response graph
○ Our dynamical solution concept!

(U,L) (U,C) (U,R)

(M,L) (M,C) (M,R)

(D,L) (D,C) (D,R)

L C R

U (2,0) (0,2) (0,0)

M (0,2) (2,0) (0,0)

D (0,0) (0,0) (1,1)

Player 1

Player 2

A Dynamical Solution Concept



● Markov-Conley chains (MCCs): 
○ Markov chains over the sink strongly connected components of response graph
○ Hint: a directed graph is strongly connected if there is a path between all pairs of its vertices.

(U,L) (U,C) (U,R)

(M,L) (M,C) (M,R)

(D,L) (D,C) (D,R)

L C R

U (2,0) (0,2) (0,0)

M (0,2) (2,0) (0,0)

D (0,0) (0,0) (1,1)

Player 1

Player 2

How many MCCs exist in the below response graph?

A. 0
B. 1
C. 2
D. 9

Quiz Question



● Markov-Conley chains (MCCs): 
○ Markov chains over the sink strongly connected components of response graph

(U,L) (U,C) (U,R)

(M,L) (M,C) (M,R)

(D,L) (D,C) (D,R)

L C R

U (2,0) (0,2) (0,0)

M (0,2) (2,0) (0,0)

D (0,0) (0,0) (1,1)

Player 1

Player 2

How many MCCs exist in the below response graph?

A. 0
B. 1
C. 2
D. 9

Quiz Question



(D,R)

● MCCs are computationally attractive, but face equilibrium selection issues akin to Nash

(D,C)

(D,L)

(U,R)

(M,R)

(U,C)

(M,L)

(U,L)

(M,C)

Lower 
Potential

Higher 
Potential

Resolving Equilibrium Selection



(D,R)

● MCCs are computationally attractive, but face equilibrium selection issues akin to Nash
● Solution: perturb the response graph such that a random walk can climb upward on the 

potential hills and hop between MCCs (sinks) with a very small probability
○ Irreducible Markov chain → unique stationary distribution → unique MCC rankings

(D,C)

(D,L)

(U,R)

(M,R)

(U,C)

(M,L)

(U,L)

(M,C)

Lower 
Potential

Higher 
Potential

Resolving Equilibrium Selection



● Remarkably, our perturbed model is equivalent to a discrete-time evolutionary process 
○ Well-studied in the literature for pairwise/symmetric games
○ Generalized in our work to K-player asymmetric games

● Basic idea: model a selection-mutation process over a set of interacting populations

K interacting populations

K-player game

......

Rare
Mutation

... ...

Linking MCCs and Evolution



● Remarkably, our perturbed model is equivalent to a discrete-time evolutionary process 
○ Well-studied in the literature for pairwise/symmetric games
○ Generalized in our work to K-player asymmetric games

● Basic idea: model a selection-mutation process over a set of interacting populations
○ Strong agents (i.e., those resistant to mutants) propagate via a selection function:

Probability of 
competing agent 𝜎 

taking over

Fitness of resident 
agent 𝜏  vs. competing 

agent 𝜎 

Ranking-intensity 
value 𝜶 

● Small 𝜶
● Weak selection

● Large 𝜶
● Strong selection
● MCC solution concept
● 𝜶-Rank

K interacting populations

K-player game

......

Rare
Mutation

... ...

Linking MCCs and Evolution



𝜶-Rank Algorithm
Construct the meta-game payoff tables from multi-agent simulations

Define a Markov chain where states are the agents being evaluated

Compute transition matrix C according to an evolutionary process with 
selection-intensity parameter 𝜶 

Compute the unique stationary distribution 𝜋 of C

Agent rankings/scores correspond to the ordered masses of 𝜋

Handles 
cycles/intransitivities

Scalable and applies to general-sum, 
symmetric/asymmetric, many-player games

Ranking guaranteed to exist 
and is unique



Micro-model: 
Continuous-time Dynamics 

Analytical toolkit:
● Flow diagrams 

sub-graph
● Attractors, 

equilibria

Applicability:
● 3 to 4 agents max
● Symmetric games 

and 2-population 
asymmetric games

Analytical toolkit:
● Markov chain
● Stationary 

distribution
● Fixation probabilities

Applicability:
● K-wise interactions
● Symmetric and 

asymmetric games

 Macro-model: 
Discrete-time Dynamics      

Unifying ranking model: 
Markov Conley Chains & 𝛼-Rank

Selection-intensity 
parameter 𝛼

Agent
Ranking

𝛼-Rank

Foundations:
● Conley’s Fundamental Theorem
● Chain recurrent sets and components

Advantages:
● Captures dynamic behavior
● More tractable to compute than Nash
● Filters out transient agents
● Involves only a single 

hyperparameter, 𝛼 

Unified View of Multi-agent Evaluation by Evolution



Demonstrations

● Rock-Paper-Scissors (2-player, symmetric, 3 agents)



Demonstrations
● AlphaZero Chess (2-player game, 56 agent snapshots taken during training)

Top-8 agents
 (training percent complete in parentheses)

Top-8 agents shown



Demonstrations
● Kuhn Poker (4-player, asymmetric, 256 agent profiles)

Top-12 profiles shown

Top-12 profiles shown



Summary

● 𝜶-Rank: principled multi-agent evaluation method
○ To appear in Nature’s Scientific Reports journal, check out arXiv draft for more: 

AlphaGo results MuJoCo Soccer results 𝜶-Rank vs. Nash in two-player games

https://arxiv.org/pdf/1903.01373.pdf


5. Gradients in Games



Where are we?

“If you have a large big dataset, and you 
train a very big neural network, then 
success is guaranteed!”                         
-- Ilya Sutskever (NIPS 2014)



The central dogma of deep (supervised) learning:

● compose differentiable modules into a neural net;

● convert data into a differentiable objective function;

● add backprop; and

● press go.

Where are we?

“If you have a large big dataset, and you 
train a very big neural network, then 
success is guaranteed!”                         
-- Ilya Sutskever (NIPS 2014)



Lots of “small” things:

● differentiable modules:

○ CNNs, LSTMs, ResNets, ReLUs, clever initializations, BatchNorm, ...

● objective functions:

○ datasets → losses

● backprop:

○ momentum, Adam, RMSProp, learning rates, hyper-parameters

● press go:

○ libraries (TensorFlow, PyTorch, ...) and GPUs take care of almost everything

How’d we get here?



One big thing:  the loss landscape

Everything depends on gradient descent 

finding (good) local minima in the loss 

landscape

Why here?

Image Credit - Vectors Market



Trouble in paradise

● Modules aren’t actually modules:

○ Trained NNs are nowhere near plug-and-play

○ NNs are invariably (re)trained from scratch

○ Not data-efficient

● Rampant overfitting

○ transfer learning is extremely difficult

○ adversarial examples

End-to-end learning doesn’t scale

Is this it?



William Gibson: “The future is already here — it's just not very evenly distributed.”

What’s next?



William Gibson: “The future is already here — it's just not very evenly distributed.”

● Generative Adversarial Networks (Goodfellow et al, NIPS 2014)

● Cycle-consistent adversarial nets (Zhu et al, ICCV 2017)

● Synthetic gradients (Jaderberberg et al, ICML 2017)

● Deep learning and neurosci (Marblestone et al, 2016)

● Intrinsic curiosity (Pathak et al, ICML 2017)

What’s next?

Image Credit - Zhu et al



Generative adversarial networks

Image Credit - deeplearning4j.org



Image Credit - Zhu et al



Cycle-GANs

Image Credit - Zhu et al

cycle-consistency =  { learning a commutative diagram }



William Gibson: “The future is already here — it's just not very evenly distributed.”

● Generative Adversarial Networks (Goodfellow et al, NIPS 2014)

● Cycle-consistent adversarial nets (Zhu et al, ICCV 2017)

● Synthetic gradients (Jaderberberg et al, ICML 2017)

● Deep learning and neurosci (Marblestone et al, 2016)

● Intrinsic curiosity (Pathak et al, ICML 2017)

Themes:

● Interacting losses and datasets

● It’s hard work and ad hoc

What’s next?

Image Credit - Zhu et al



● Learning:

○ Why? Don’t want to hand-code behaviors

○ Catch: Weaker guarantees

A brief history of ML



● Learning:

○ Why? Don’t want to hand-code behaviors

○ Catch: Weaker guarantees

● Learning representations:

○ Why? Don’t want to hand-design features

○ Catch: Non-convex optimization 

A brief history of ML



● Learning:

○ Why? Don’t want to hand-code behaviors

○ Catch: Weaker guarantees

● Learning representations:

○ Why? Don’t want to hand-design features

○ Catch: Non-convex optimization 

● Learning losses:

○ Why? Don’t want to hand-label data

○ Catch: ...

A brief history of ML



What’s the problem?



Minimal example

● Dynamics cycle around origin



● Dynamics cycle around origin
● There’s no consistent “down direction”

But there’s no landscape

Image Credit - Heritage Auctions, MC Escher



But there’s no landscape

● Dynamics cycle around origin
● There’s no consistent “down direction”

Technical problem:
● Vector field isn’t a gradient vector field Image Credit - prakruti



Three problems

1. Gradient descent isn’t guaranteed to converge (to anything, at all)
2. Even if it does, it can be very unstable and slow
3. Actually, can’t even measure progress

Learning rate                 0.01                                  0.032                                0.1



Mathematicians and physicists have been studying geometry for centuries.
There must be something on-the-shelf that we can use.

Which geometry?



Helmholtz decomposition:
Any vector field in R3 decomposes as a sum of a gradient vector field (a curl-free 
or irrotational component) and a divergence-free component:

Div, grad, and curl

Escher-ish
(measures infinitesimal 
tendency to rotate)

landscape-ish



Minimal example



Minimal example

●  Vector field is divergence-free
○ There’s no function that is being optimized



Minimal example

●  Vector field is divergence-free
○ There’s no function that is being optimized

● ???



Minimal example

●  Vector field  is divergence-free
○ There’s no function that is being optimized

● ???

Dead end



Mathematicians and physicists have been studying geometry for centuries.
There must be something on-the-shelf that we can use.

Actually, those cycles look like planetary orbits …

Which geometry?



Canonical coordinates: position q          and momentum p = mv

Hamiltonian:   total (potential + kinetic) energy

Dynamics:                                            

Conservation of energy: 
The dynamics lives on the level sets of the Hamiltonian.

Classical mechanics (in one slide)



Position, momentum, and conservation of energy 
don’t feature in good old fashioned game theory.

Game mechanics?



Eg: zero-sum bimatrix games

Singular value decomposition: 

Change of coordinates:

New losses:



Hamiltonian:

Level sets are ellipses (in original coordinates)

Hamiltonian dynamics:

Eg: zero-sum bimatrix games



How to solve Hamiltonian games
● Level sets of the Hamiltonian 

(ellipses) are conserved by 

simultaneous gradient descent 

on the losses

● Gradient descent on the 

Hamiltonian (not the losses) 

finds Nash equilibrium



Game over?
● Constructing the Hamiltonian relied on 

simultaneously SVD-ability of losses. 

● Can something like this be done in general? No.



The big picture

Potential games
H

am
ilt

on
ia

n 
ga

m
es

general games



● PPAD hard (even for 

good old fashioned 

games)

● No tractable, general 

purpose method

The big picture

Potential games
H

am
ilt

on
ia

n 
ga

m
es

general games



● Studied by game 

theorists for 30+ years

● “cooperative”

● Simultaneous gradient 

descent on losses finds 

local Nash

The big picture

Potential games
H

am
ilt

on
ia

n 
ga

m
es



● (supervised) deep 

learning lives here

The big picture

Potential games
H

am
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n 
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es



The big picture

Potential games
H

am
ilt

on
ia

n 
ga

m
es

● New class of games

● “hyper-adversarial”

● Gradient descent on 

Hamiltonian finds local 

Nash



The big picture

Potential games
H

am
ilt

on
ia

n 
ga

m
es

● Gradient descent on 

Hamiltonian finds local 

Nash

● Gradient descent on 

losses finds local Nash

general games



Infinitesimal structure of gradients

Game Hessian:



Infinitesimal structure of gradients

Generalized Helmholtz decomposition:



Infinitesimal structure of gradients

Generalized Helmholtz decomposition:



Div, grad, and curl (again)

functions
scalar-valued

1-forms
vector-valued

2-forms
antisymmetric matrix-valued

(Lie algebra of infinitesimal rotations)

d0 d
1grad “curl”

exterior derivative



Div, grad, and curl (again)

functions
scalar-valued

1-forms
vector-valued

2-forms
antisymmetric matrix-valued

(Lie algebra of infinitesimal rotations)

d0 d
1grad “curl”

2-form measures failure to
be a gradient vector field



The generalized Helmholtz decomposition:

The game Hessian decomposes as 

Div, grad, and curl (again)

functions
scalar-valued

1-forms
vector-valued

2-forms
antisymmetric matrix-valued

(Lie algebra of infinitesimal rotations)

d0 d
1grad “curl”

“gradient component” “curl component”



The big picture

Potential games
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●

● computational cost is 2x backprop

Symplectic Gradient Adjustment (SGA)



Symplectic Gradient Adjustment (SGA)

Properties:
●                 : adjustment is compatible with original dynamics

○ Related: consensus optimization (Mescheder et al, NIPS 2017), 
which is attracted to local maxima

● if potential game then SGA is gradient descent → finds local min
● if Hamiltonian game then SGA finds local Nash equilibrium
● behaves correctly near stable and unstable equilibria



SGA allows higher learning rates
Learning rate                 0.01                                  0.032                                0.1

SGA                              

Gradient descent



Comparison with Optimistic Mirror Descent: 2-players
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Comparison with Optimistic Mirror Descent: 4-players
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Performance on synthetic GAN



Performance on synthetic GAN



Performance on synthetic GAN



Summary

● Deep (supervised) learning is gradient descent on a loss

○ Simple, effective, one-concept-fits-all

○ Compositionality comes for free

● We’re starting to work with interacting losses

○ We don’t really know when or how to compose losses

○ There’s real thinking to be done



6.  Multi-agent Learning at Scale



Multi-agent Reinforcement Learning (MARL)

Objective: find policy that maximizes local or joint value:  

Competitive Cooperative



MARL: Training and Execution

Centralized

Learning

Decentralized

Learning

Centralized

Execution

Decentralized

Execution



Independent Q-Learning Approaches
Independent Q-learning [Tan, 1993] Independent Deep Q-Networks [Tampuu et al., 2015]



Lenient Learning Approaches

● Issue: Non-stationarities → policy/Q-value degradation and destabilization

● Idea: learners should be lenient against/ignore Q-value degradation

○ See Lenient Deep Q-Networks (Palmer et al., 2018) and Hysteretic 

Q-Networks (Omidshafiei et al., 2017) 

Hysteretic Q-Networks: 



Lenient Learning Approaches

● Issue: Non-stationarities → policy/Q-value degradation and destabilization

● Idea: learners should be lenient against/ignore Q-value degradation

● Converges to optimal in deterministic cooperative MDPs [Lauer et al., 2000]

Non-lenient learning

Lenient learning



● Idea: reduce nonstationarity & credit assignment issues using a central critic 

● Examples: MADDPG [Lowe et al., 2017] & COMA [Foerster et al., 2017]

● Apply to both cooperative and competitive games

Centralized Critic Decentralized Actor Approaches

Critic

Actor 2Actor 1

s  ro1 o2a1 a2

a2a1

Environment

Q(s|a)Q(s|a)

Decentralized actors trained via policy gradient:

Actor

Critic

Centralized critic trained to minimize loss:



Opponent-aware Models

● Idea: account for beliefs, models, and/or learning algorithms of other agents

Interactive POMDPs [Gmytrasiewicz & Doshi, 2005]

Maintain a belief over environment state and the other 
agents’ models (e.g., learning algorithms, observation 
functions, their beliefs over other agents, etc.)

Learning with Opponent-Learning Awareness (LOLA) 
[Foerster et al., 2018]

“Naive” learner policy gradient update for agent 1:

2nd order 
term

RD(x)

Extended Replicator Dynamics [Tuyls et al., 2003]

In standard replicator dynamics (RD), player 
strategies evolve greedily w.r.t. current payoff: 

In the extended RD, players take into account payoff 
growth in the future:

Taylor-expand agent 1’s value given agent 2’s update:

Assuming agent 2 is a naive learner with update 

then we arrive at the LOLA update rule:



Games and Reinforcement Learning

Game theory

● Solutions are strategy profiles 

specifying joint actions at all 

possible information sets

Reinforcement learning

● Solutions are joint policies 

specifying joint actions at all 

possible partially observed states



● Idea: Fictitious self-play (FSP) + deep reinforcement learning 
● Approximate NE via two neural networks:

Neural Fictitious Self-Play [Heinrich & Silver 2016]

Reservoir 
Buffer

Circular 
Buffer

AVG 
Net

BR 
Net

Policy 
Mixing

Parameter

1. Best response net (BR): 
○ Estimate a best response
○ Trained via RL

2. Average policy net (AVG): 
○ Estimate the time-average policy
○ Trained via supervised learning



Neural Fictitious Self-Play [Heinrich & Silver 2016]

“Closeness” to Nash

● Leduc Hold’em poker experiments:

● 1st scalable end-to-end approach to learn approximate Nash equilibria w/o prior domain knowledge
○ Competitive with superhuman computer poker programs when it was released 



● Nash
● PG policy
● RD policy

Policy Gradient (Advantage Actor-Critic) Replicator Dynamics

logit space stateless tabular case

Learning under Nonstationarity



● Policy Gradient handles high-dimensional state- and action-spaces seamlessly

○ Replicator Dynamics are limited to tabular settings

● Replicator Dynamics are no-regret (time-average convergence to Nash)

○ Policy Gradient has no such guarantees

Neural Replicator Dynamics: best of both worlds!

Neural Replicator Dynamics (NeuRD)



Replicator Dynamics Time-discretize

Parameterized policy

Update policy 
parameters to 

minimize distance to 
time-discretized RD

Neural Replicator 
Dynamics (NeuRD)

Neural Replicator Dynamics (NeuRD)

Logits, where policy is 

Advantage q(s,a)-v(s)



Biased Rock-Paper-Scissors Leduc Poker

Results



A MARL Retrospective

Non-exhaustive list! For more, check out:

“Deep Reinforcement Learning for Multi-Agent Systems: A Review of Challenges, Solutions and Applications” (Nguyen et al., 2019)

“Is multiagent deep reinforcement learning the answer or the question? A brief survey” (Hernandez-Leal et al., 2018)

“Multiagent learning: Basics, challenges, and prospects." (Tuyls & Weiss, 2012)

“Independent reinforcement learners in cooperative markov games: a survey regarding coordination problems.” (Matignon et al., 2008)

Foundational Algorithm Modern and/or Deep RL Counterpart

Fictitious Play [Brown, 1951] Extensive-form Fictitious Play [Heinrich et al., 2015]
Neural Fictitious Self-Play [Heinrich & Silver, 2016]

Independent Q-learning [Tan, 1993] Multi-agent Deep Q-Networks [Tampuu et al., 2015]

Double Oracle [McMahan et al., 2003] Policy-Space Response Oracles [Lanctot et al., 2017]

Hysteretic Q-learning [Matignon et al., 2007] Recurrent Hysteretic Q-Networks [Omidshafiei et al., 2017]

Extended Replicator Dynamics [Tuyls et al., 2003] Learning with Opponent-Learning Awareness [Foerster et al., 2017]

Lenient Learning [Panait et al., 2006; Panait, Tuyls, Luke, 2008] Lenient Deep Q-Networks [Palmer, Tuyls et al., 2018]

Replicator Dynamics [Taylor & Jonker, 1978; Smith, 1982; 
Schuster & Sigmund, 1983] Neural Replicator Dynamics [Omidshafiei et al., 2019]
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7.  Why are Games Important?
Wrap-up



Games as a Multi-Agent Platform

How Life Imitates Chess G. Kasparov

“Unfortunately, the number of ways to 
do something wrong always exceeds 
the number of ways to do it right” 

“A CEO must combine analysis and 
research with creative thinking to lead 
his company effectively”Image credit: S.M.S.I., Inc. – Owen Williams, The Kasparov Agency



Good controlled model  for Multi-Agent Learning

● Simple rules, deep concepts 

● Studied for hundreds or thousands of years 

● Co-evolution artifact -> Learning

● ‘Drosophila’ of artificial intelligence 

● Microcosmos encapsulating real world issues 

● Games are fun!

Games for AI



Games for AI - A theory of Games

● Concept from traditional Game Theory
● Hyper-rational players
● Static concept

Intuitively: A Nash Equilibrium is a strategy profile
for a game, such that no player can increase its
payoff by unilaterally changing its strategy.

● Players are not hyper rational, but 

also biologically and socially conditioned



Zero-Sum Games for AI
● Why are zero-sum games of interest?

○  Many standard AI benchmark domains are inherently zero-sum

○ Strong theoretical guarantees for zero-sum games

○ Strict relations over outcomes → strategize by maximizing wins/rewards

○ Existence of standard algorithm evaluation methods



AlphaGo Zero

Mastering Go without Human Knowledge



AlphaZero: One Algorithm, Three Games

GoShogiChess



Video Games

Started with toy MDPs.

Grid worlds starting to feel like games.

Atari - very engaging for humans.

 

Mnih et al, 2018.



Video Games

Started with toy MDPs.

Grid worlds starting to feel like games.

Atari - very engaging for humans.

3D single-player - even richer potential 
task space. (DeepMind Lab, VizDoom, 
Minecraft)

 A3C Vmnih et al 2016, 

UNREAL Jaderberg et al, 2016.



Much richer task space with simple rules: competitive and cooperative

Diversity of solution: robustness

Auto-curricula

Non-stationary: continual learning

Video Games: Multi-agent 

Bansal et al, 2017. Dorer vs Stone, 2017.



● Development of general applicable techniques in

○ Controlled environments

○ Fast simulations

○ Principled evaluation and understanding

○ Drives the AI Frontiers

● Can be deployed in various other domains

○ Fraud detection systems

○ Auction agents

○ Energy systems (smart grid)

○ Industry 4.0 systems

The Importance of Games


